





# Section 15: Predicting residual acceleration effects on space experiments

Emily Nelson
Computational Microgravity Laboratory
NASA Glenn Research Center
Emily.S.Nelson@grc.nasa.gov





#### **GOAL**:

### Predict sensitivity of the experiment to the acceleration environment

- PI must justify need for microgravity
- PI must be able to predict tolerable (and intolerable) environments







## Pl's choices (and assignments) affect the quality of the μg environment

- flight mode ( attitude of the carrier with respect to the earth)
- deadband (allowable angular displacement from the desired mode)
- location of experiment relative to CG
- orientation of the experiment w.r.t. Shuttle (or ISS) body axes
- scheduling of crew activities
- operation of other apparatus or experiments







### Recommendations to minimize g-jitter effects based on flights of MEPHISTO (directional solidification)

- Use flight modes which do not require **Shuttle maneuvers** for water dumps, etc. (e.g., -ZLV,+YVV) for long-duration microgravity (>3 days)
- To minimize large accelerations, **specify a flight mode** requiring fewer thruster firings to maintain attitude; **2° deadband** required fewer thruster firings than 1° -- better µg
- Experiments should be *aligned with Shuttle's z body axis* for these flight modes to minimize transient acceleration effects (least transmission of disturbances along this axis)









- de Groh and Nelson, 1994





## Strategy for assessing experiment sensitivity to the µg environment

- (1) Identify the *tolerance criterion*
- (2) Correlate acceleration to the tolerance criterion
- (3) Perform "simple" analyses to determine *range of sensitivity*
- (4) As necessary, perform a **detailed analysis** in the range of sensitivity
- (5) Develop detailed μg tolerance specifications





### 1. Identify tolerance criterion

#### Tolerance criteria are:

- subjective
- arbitrary (to some extent)
- functions of many parameters
  - physics
  - experiment goal
  - composition of system (thermophysical properties, etc.)
  - geometry of system (aspect ratio, length of test section, etc.)
  - applied boundary conditions (applied thermal or pressure field, velocity of boundaries, etc.)



A good tolerance criterion is a function both of the specific experiment design and the specific environment in which it is placed





#### Two examples

- directional solidification: buoyancy-driven flow of a passive scalar field (natural convection)
  - goal is to *suppress convection* to maximize homogeneity of the crystal (diffusion-controlled growth)
  - *highly sensitive* to residual acceleration (orientation, magnitude, frequency)
  - requires very long duration microgravity (hours to days)
  - *lots of previous studies*, including space experiments
- granular flow: segregation of a binary mixture of particles in a collision-dominated flow
  - uses kinetic theory of gases as analog to grain fluctuation energy, T
  - relatively insensitive to residual acceleration
  - relatively short-duration microgravity (minutes)
  - no similar previous investigations





#### Bridgman growth of semiconductor crystals



First, develop the tolerance criterion in terms that are *physically meaningful w.r.t. the experiment* 

Tolerance criterion:

1% variation in

solute concentration

at solid/liquid
 interface (for
 example)

$$\xi = \frac{c_{max_{interface}} - c_{min_{interface}}}{c_{bulk}}$$





## Microgravity segregation of energetic grains (μgseg)









## 2. Correlate acceleration to tolerance criterion

- All experiments will have some dependence on acceleration magnitude, frequency, orientation, and duration
- Experimental system response varies enormously, e.g.,:
  - may be very sensitive to *specific* frequencies, orientations, etc. esp. for interfaces, critical point experiments
  - require examination of overall momentum input, esp. for bulk flows
  - may need long recovery times for short disturbances, esp. for flows with large Schmidt or Prandtl number

**Key:** what drives the sensitivity?





#### **Analysis tools include:**

- theoretical analysis
  - order-of-magnitude analysis
  - exact solution of a simplified problem
- numerical simulation
  - traditional FD/FE/FV approach
  - direct numerical simulation
  - stochastic approach
- experimental testing (ground-based)
  - ground-based facilities, e.g., KC-135, drop tower
  - vibrating platforms
  - centrifuge

FD: Finite Difference FE: Finite Element

FV: Finite Volume





## Develop a model of experiment response to acceleration input





#### Develop a model of experiment response to acceleration input (cont'd)



#### Effect of g orientation on directional solidification



- Arnold et al., 1991



#### Develop a model of experiment response to acceleration input (cont'd)





#### Develop a model of experiment response to acceleration input (cont'd)



Mean granular
temperature as a
function of acceleration
frequency and
amplitude

$$T = T_0 + c_i f^{\dagger} a^{\dagger 2}$$

#### granular shear flows

- Jenkins and Louge, 1998





#### Develop a model of experiment response to acceleration input (cont'd)



Net acceleration=0, <u>but</u> system reacts in a <u>transient</u> manner with finite response time

⇒Net system response may be nonzero





#### Develop a model of experiment response to acceleration input (cont'd)



MEIT-99 / Section 15 / Page 17





#### Develop a model of experiment response to acceleration input (cont'd)

### But eventually, we must consider the actual acceleration environment for the carrier of interest, e.g.:

- International Space Station
- sounding rocket
- Space Shuttle
- free flyer
- low-g aircraft, e.g., KC-135
- Mir







#### Develop a model of experiment response to acceleration input (cont'd)

### To describe the actual environment for numerical or theoretical analysis:

use actual acceleration data at or near location of experiment

$$g_i(t), \quad i = x, y, z$$

 construct g in the time domain using predicted spectral data, e.g., from ISS predictions, simplified data spectrum

$$g_i(t) = g_{qs_{,i}} + \sum_n g_{o_{,i}} \sin(2\pi f_n t) + g_{t_{,i}}(t)$$

examine predicted or actual data in spectral domain





#### Develop a model of experiment response to acceleration input (cont'd)



(Concentration variation at solid/liquid interface as a function of time using a simplified spectrum of the Shuttle acceleration environment)

Initial transient in natural convection in enclosures: Startup of multifrequency sinusoidal disturbance

- Alexander et al., 1991

12/09/99

MEIT-99 / Section 15 / Page 20





### 3. Identify range of sensitivity







## Tolerability limits for buoyancy-driven flows in enclosures







## Effect of single-frequency g-jitter on T in granular shear flow



CONCLUSION: suitable environment can be found on ISS - Jenkins and Louge

- Jenkins and Louge, 1998





Sensitivity of directional solidification to quasisteady g orientation



Be aware that any inhabited spacelab is likely to be extremely variable in due to the rich variety of acceleration sources!

NOTE: For other experiments, this tendency towards improved mixing may actually be beneficial!

Arnold et al., 1991





### 4. Perform detailed analysis



**Q**: Is vibration isolation necessary?





## Effect of vibration isolation on directional solidification





#### **Idealized ISS environment:**

- constructed from DAC-3 (Design Analysis Cycle #3)
- used a frequency range from 0.01 to 14
   Hz for several hours of simulated μg
- neglected effects of robot arm (big peak at 0.1 Hz), but included treadmill and other facility operations

Use this data to create g(t): 
$$g_i(t) = g_{qs_{,i}} + \sum_n g_{o_{,i}} \sin(2\pi f_n t)$$

Nelson and Kassemi, 1997
 MEIT-99 / Section 15 / Page 26





#### Effect of vibration isolation on directional solidification (cont'd)



Nelson and Kassemi, 1997





#### Effect of vibration isolation on directional solidification (cont'd)





Nelson and Kassemi, 1997





#### Effect of vibration isolation on directional solidification (cont'd)

**Q**: Is vibration isolation necessary for this case?

**A**: Yer darn tootin'!







# 5. Develop detailed microgravity tolerance specs

#### Specify duration of experimental runs

- typical length
- anticipated maximum/minimum length
- expected number of runs per 30-day microgravity period

#### Describe the quasisteady acceleration limits

- upper bound of QS magnitude (expect several µg on ISS)
- desired *orientation* (if choices are available); angular *tolerance* about that orientation (e.g., align experiment with torque equilibrium attitude (TEA) of ISS with a tolerance of  $\pm 0.05$ . Maintain QS **g** orientation to within TEA  $\pm 10$





#### Identify oscillatory acceleration limits

- specific frequencies at particular magnitudes of concern
- frequency cutoff (frequencies above or below the cutoff are of no concern)
- thumbs up/down for specific environments, e.g.,
  - acceleration data from Shuttle, sounding rocket, KC-135, ISS...
  - predicted ISS environment, e.g., from DAC-xx for a specific configuration and disturbance environment:
    - unisolated rack
    - ARIS vibration isolation
    - passive vibration isolation
    - MIM, g-LIMIT, or other active sub-rack isolation unit

#### Describe transient acceleration limits

- thumbs up/down for identified transients (based on thruster firings, impulsive crew activity, etc., e.g., 100 µg for up to 2 sec);
- specify *integrated acceleration input* subject to limits (e.g., 300  $\mu$ g sec with magnitude 150  $\mu$





#### Recap:

## Prediction of experiment sensitivity to the µg environment through modeling

- Identify the tolerance criterion
- Correlate acceleration to the tolerance criterion
- Perform "simple" analyses to determine range of sensitivity
- As necessary, perform detailed analysis in the range of sensitivity
- Develop detailed µg tolerance specs





#### Bibliography

Alexander, J.I.D. 1990. "Low-gravity experiment sensitivity to residual acceleration: a review" *Microgravity Sci & Tech 3*:52–68

Alexander, J.I.D., J. Ouazzani, and F. Rosenberger. 1991. "Analysis of the low gravity tolerance of Bridgman-Stockbarger crystal growth: Part II. Transient and periodic acelerations." *J Crystal Growth 97*:285-302.

Arnold, W., D. Jacqmin, R. Gaug and A. Chait. 1991. "Three-dimensional flow transport modes in directional solidification during space processing." *J Spacecraft and Rockets* 28238-243.

De Groh, H.C. and E.S. Nelson. 1994. "On residual acceleration during space experiments." ASME HTD-Vol 290, pp 23-33.

Demel, K. 1986. "Implications of acceleration environments on scaling materials processing in space to production." In *Measurement and characterization of the acceleration environment on board the Space Station*. NASA/MSFC and Teledyne Brown. Aug 11–14.

Jenkins, J. and M. Louge. 1998. "Microgravity Segregation of Energetic Grains." *Science Requirements Document*.

Monti, R. 1990. "Gravity jitters: effects on typical fluid science experiments." In J.N. Koster and R.L. Sani, Low-gravity fluid dynamics and transport phenomena. AIAA.

Nelson, E.S. 1991, 1994. "An examination of anticipated g-jitter on Space Station and its effects on materials processes." *NASA TM* 103775.

Nelson, E.S. and M. Kassemi. 1997. "The effects of residual acceleration on concentration fields in directional solidification." *AIAA 97*–1002.